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Abstract
The effect of varying “input realism” or varying completeness of the input data for linear mi-
croinstability calculations, in particular on the critical value of the ion temperature gradient for
the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches.
The calculations show that varying input realism can have a substantial quantitative effect on the

results.
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We want to determine the effects of going from more simplified input data to more
“experimentally-realistic” input data, in particular on the marginally-stable critical value of
the ion temperature gradient for the ion temperature gradient (ITG) mode. This work is
in a sense an extension of that in Ref. 1 where a very specific simplified set of parameters
(referred to as the basic Cyclone case), based on a discharge? of the DIII-D tokamak,® was
specified for purposes of comparison of linear and nonlinear gyrokinetic and gyrofluid codes.
Here, on the other hand, we examine the effects on this linear critical value of progressively
adding back in the experimental realism that was omitted from the basic Cyclone case. To
do this we employ the gyrokinetic code FULL*® and the gyrofluid code GLF23.% Both of
these codes are linear, radially-local (i.e., ballooning representation or flux tube) eigenvalue
codes. They differ in that the FULL code solves for the eigenfunction along the unperturbed
magnetic field line, whereas the GLF23 code prescribes a trial wavefunction along the field
line. Since its original release, the trial wavefunction in GLF23 has been altered to include §
and o dependence to better reproduce the growth rates for reversed magnetic shear internal
transport barrier (ITB) parameters; the transport levels in the model were also recently
renormalized using nonlinear gyrokinetic simulations.”

Here, we start with the basic Cyclone case as specified in Ref. 1. This case is collisionless,
electrostatic, uses the s—a model magnetohydrodynamic (MHD) equilibrium with o = 0 (no
Shafranov shift), uses the experimental values of T; and R/Ly; = —R dInT;/dr for both
ions and electrons, includes only the adiabatic part of the electron response, and includes
only the electron and background deuterium ion species.

Then we start adding in additional effects, in stages, to make the case progressively more
realistic for the original DIII-D discharge? 81499 at ¢ = 4.0 s and r/a = 0.5, that the basic
Cyclone case is based on.

For each stage, the critical value (R/Lr;)"' for marginal stability of the ITG mode is
calculated, varying the temperature gradients of all species in proportion to (R/Lr;), with
the density gradients of all species and kgp; = 0.335 (very close to the growth rate maximum
for the basic Cyclone case) held fixed, where kg = nq/r and p; = /T;/m;/(€iBo/mic).

The results are summarized in Table I. For Case (a), which is the basic Cyclone case,
the parameters are: r/R = 0.18, ¢ = 1.4, § = 0.776, a« = 0, R/L,; = R/L,. = 2.22,
R/Lr; = R/Ly. = 6.92, and T;/T. = 1.0, in standard notation. The FULL code result
is (R/Lt;)™* = 4.0 and the GLF23 result is (R/L7;)®™*® = 4.5, which are in reasonable



agreement.

Then, Case (b) adds the collisionless trapped electron response to the calculation, which
is destabilizing due to the collisionless trapped electron mode destabilization mechanism.
This is a trapped electron toroidal precession drift resonance mechanism. The marginally
stable values (R/Lr;)"!" are thereby lowered to 3.1 for the FULL code and to 3.3 for the
GLF23 code, in good agreement.

For Case (c), a # 0 (i.e., the Shafranov shift is included); a carbon impurity species is
added, but only by a dilution effect on the background deuterium ions; electron and ion and
impurity collisions are included; and the experimental values of T, and R/ L. are used for
the electrons. The new parameters are: o = 0.3, R/Ly. = 4.23, T;/T. = 1.2, Zeg = 2.3
(dilution effect only), and v* = 0.05, with the other parameters the same as in Case (a).
Each of these effects is somewhat stabilizing, and the overall result is to raise (R/LTZ')Crit to
3.8 for the FULL code and 4.0 for the GLF23 code, again in good agreement. Case (c) is
the most realistic case that can be calculated with the GLF23 code in its present form.

Finally, for Case (d), which is calculated only by the FULL code, a finite-8 non-up-
down-symmetric MHD equilibrium, reconstructed numerically from the experiment by the
EFIT code,? is used instead of the § — a model MHD equilibrium. In addition for Case (d),
the complete response for the carbon impurity species is used, and the complete response
for a hot deuterium beam species with a slowing-down equilibrium distribution function
is added. The numerical MHD equilibrium has less bad curvature than the model MHD
equilibrium, and thus weakens the collisionless trapped electron mode destabilization mech-
anism substantially, while the complete carbon response is moderately stabilizing, and the
added hot beam species is essentially neutral for this case. The final result for Case (d) is
(R/ L)t = 5.4.

For this Cyclone-DITI-D case, the most realistic value of (R/Lr;) = 5.4 is not very
far from the experimental value (R/Ly;) = 6.92, so that the the mode is not very far from
marginal stability, and sheared E x B rotation may finish stabilizing the mode. The overall
conclusion here is that changes in the “realism” of the input data can make substantial
quantitative differences in the linear results, due to a combination of added stabilizing and
destabilizing effects. This point is implicit in previous work on microinstabilities, but it is
useful to make the point explicitly here, and it is important to keep it in mind for future

global and nonlinear studies. In addition, any improvements in experimental measurements



TABLE I: Results for (R/Lz;)" for ITG root for cases of varying input realism

Clase FULL (R/Lqp;) GLF23 (R/Lr;)t

(a) Basic Cyclone

case: adiabatic 4.0 4.5
electrons

(b) Add

collisionless 3.1 3.3

trapped electrons

(c) Add a # 0, carbon
(dilution only), collisions, 3.8 4.0
exper. T, & R/Lr.

(d) Add finite-8 non-up-down-symm.
EFIT MHD equil., complete carbon, 5.4 -

& slowing-down hot beam species

of input profiles of density, temperature, and so on, and therefore of their gradients, will

correspondingly improve the calculated results.
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